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KERNAN, W J , JR , P J MULLEN1X AND D L HOPPER Pattern tecognmon of rat behavtor PHARMACOL 
BIOCHEM BEHAV 27(3) 559-564, 1987 --Analysm of animal behavmr has been an arduous task requiring a human 
observer to record and classify mdwldual motor acts A computer pattern recognmon system is mtroduced which simplifies 
th~s task by minimizing the need for human mterventmn This system uses two v~deo cameras with horizontal and vertical 
views of the behavmr of a control and an experimental rat as they explore a s~mple environment for 15 minutes Their 
behawor is sampled at a rate of one frame/second Data from the v~deo cameras are then converted into a form acceptable 
to M~cro Vax I and VAX 11/750 computers Each video picture ~s reduced to a 256 by 256 army, and ultimately each 15 
minute observatmn sessmn generates 28,800 blocks of information at 512 bytes each Using a mathematically complete set 
of moments to the fourth order and the associated scalar mvanants, the computer ~s programmed to identify the five major 
body positrons of the rat mcludmg standing, sitting, reanng, walking and lying down The computer also is programmed to 
identify the behaviors of grooming, head turning, whole body turning, looking, smelhng, sniffing and washing face This 
computer pattern recogmtlon system not only speeds up behavioral classlficatmn, it allewates the much cntlozed subjec- 
tlvtty introduced by human observers 

Automated behawor Locomotor behavior Pattern analysis Rat 

T H E  value of  observing spontaneous  behavmr  m detect ion 
o f  central  nervous  sys tem (CNS) deficits has been  demon-  
strated in many studies of  toxic substances  [1, 5, 6, 9] Wide- 
spread use o f  these  observat ional  techniques ,  however ,  ts 
not  commonp lace  because  they are labor  intensive They  
require the invest igator  to observe ,  classify and record  be- 
havior  at the rate o f  its occur rence  Al though the permanent  
records  provided  by film [7] and videotapes  [1] have aided 
observat ion ,  behaviora l  classification and recording have 
remained  the burden of  a human obse rve r  Using tune-lapse 
photography as an example ,  it takes an exper ienced  obse rve r  
no less than 2 5 hours to classify and record  the events  oc-  
curing in 900 f rames o f  film At  that  rate,  generat ion o f  mul- 
tiple dose- response  curves ,  the mainstay o f  toxicological  in- 
terpretat ion,  is pract ical ly  ~mposslble to accompl ish  

Beyond  the lnordinant  amount  o f  t ime it takes  a human to 
" r e a d "  a film, there  remains a ques t ion of  obse rve r  bias 
Good  obse rve r  rel iabihty is achievable ,  but  a tune- 
consuming conf i rmat ion by a second obse rve r  is often used 

to help p reven t  bias Fo r  example ,  the reproduclbihty  o f  
behaviora l  classif ication by the same obse rve r  is high, corre-  
lations be tween  behav ior  sequence  data  reread by the same 
obse rve r  have  ranged from 0 83 to 0 94 [9] Correlat ions be- 
tween the same sequence  data  read by different observers  
were  lower ,  however ,  ranging f rom 0 70 to 0 84 [9] Thus,  
observer  blas is not  prohibi t ive to behaviora l  classif ication,  
but  certainly there is room for improvemen t  critical to over-  
all detect ion capabil i ty 

The  purpose  o f  this s tudy is to deve lop  a method  that will 
improve  the speed and reliability of  behaviora l  classLfiCatlon 
A compute r  pat tern recogni t ion sys tem is introduced,  one 
that  classifies the behaviora l  acts o f  rats The  utihty o f  com- 
puter  pat tern recogni t ion for classifying behav ior  with mini- 
mal human mtervenUon has been  demons t ra ted  in studies of  
nonhuman primates  [3,4] In contras t  to the pr imate  study,  
the system in t roduced here  incorporates  the basic experi-  
mental  design special  to t ime-lapse photographic  analysis o f  
rat behav ior  [7] The  tune-lapse photographic  technique 
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FIG 1 The test environment It accommodates the simultaneous 
observatmn of control and experimental rats and the chamber walls 
are slanted to be invisible to the v~deo cameras 

OBSERVATION ROOM COMPUTER ROOM 

FIG 2 Configuratmn of the computer pattern recognition system 

serves as a model framework because of its extenswe devel- 
opment [7,8] for determining the most complete set of pa- 
rameters of behavmral change (lmtlatmns, average dura- 
tions, sequences and time dastributlon), for multiple motor 
acts (15 or more) over a long observatmn tame (15 minutes or 
more) at a rapid rate of behavaoral sampling (one per sec- 
ond) 

O B S E R V A T I O N A L  E N V I R O N M E N T  

In the redesign of the time-lapse photographic method to 
uUhze pattern recognition techniques, an effort has been 
made to keep the test enwronment as close to that in prior 
experiments as possible Consequently, as before, the new 
environment consists of a clear Plexlglas box dwtded m half 
by a clear partmon with small (1 2 cm) holes This design 
allows the samultaneous testing of a control and an experi- 
mental rat placed on opposite s~des of the partition In that 
the animals can see and smell each other, their behavmr is 
not that of isolated ammals The feature of simultaneous 
testing of control and experimental ammals is preserved here 
for a number of reasons First, any accidental change m 
environmental conditions, no~se, temperature e t c ,  is expera- 
enced by both animals at the same time Second, the hmlted 
socml lnteractmn triggers enough spontaneous behavmr that 
frequency counts of a llmated number of behavmrs are hagh, 
which m turn allows good statlstacal comparisons Fanally, 
testing ammals two at a tame reduces the overall length of 
t~me reqmred to complete the experiment 

Only a few notable changes in the test environment have 
been made for the purposes of this study In order to 
minimize reflectmns from the Plexlglas walls of the box, the 
walls are slanted m a fashmn that makes them mwslble to the 
video cameras The box, therefore, can be described more 
specifically as having a trapezoidal shape at its top and bot- 
tom, where the two trapezoids are separated by 23 5 cm The 
top trapezmd has parallel sides 42 cm and 32 cm m length 
that are separated by 24 cm The parallel sides of the bottom 
trapezoid are 52 5 and 40 cm long, separated by 31 cm The 
general shape of this box is shown m Fig 1 In addlUon, the 
single time-lapse camera placed approximately 5 feet in front 
of the box has been replaced with two wdeo cameras at 
approximately one meter, one oriented horizontally and the 
other vertically In the observational environment designed 

for pattern recognition of pnmate behavior [3,4], three or- 
thogonal video cameras were necessary because of the more 
complex movements performed by this species The simpler 
movements of rats make the third orthogonal view unneces- 
sary and the feature of testing two ammals at a time make it 
~mpractlcal The only other change in the test enwronment ~s 
that the Plexlglas box is not situated m a sound attenuated 
chamber Rather, it is positioned in a small room dedicated 
to these experiments This room is somewhat isolated from 
the rest of the laboratory area, ~t is qmet and all data are 
taken with the room door closed Lights are carefully placed 
so that close to uniform hghtlng throughout the test area 
allows good contrast between the animals and the black 
background built behind and below the Plexlglas box 

PATTERN RECOGNITION SYSTEM 

The complete system can logically be divided into the 
following phases data acquisition, pattern analysis and pat- 
tern classificatmn Data acqulsmon ts the process of convert- 
ing the data from the physical source (wdeo ~mage) into a 
form acceptable to the computer for further processing Pat- 
tern analysis includes all computations needed to ~dentffy the 
lnvanant  characteristics of the original data and any associ- 
ated classes of patterns Finally, pattern classification as- 
signs each observation of the rat to a particular behavioral 
act In the initial development, pattern analys~s and pattern 
classification must be camed out m a m~xed order requmng 
some degree of iteration and lnteractmn For example, re- 
llab~hty measures of pattern classificatmn may reveal a criu- 
cal change needed in pattern analys~s Many such iterations 
may be required before the pattern recognmon problem ~s 
satlsfactonly solved 

I Data Acquisition Hardware 

The overall system (Fig 2) is composed of a Digital 
Equipment Corporation MICRO VAX I connected via an 
ethernet link to a DEC VAX 11/750 computer The VAX 
11/750 has a floating point accelerator, a tape dnve,  a 456 
MB disk for data storage, a hne pnnter ,  a console, and a VT 
240 graphics display monitor 

The signals from each video camera (Cohu Model 5200) 
go into video processing boards (Imaging Technology, Inc , 
AP-512 and FB-512) in the MICRO VAX I computer This 
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subsys tem takes a f rame from each of  the v ideo cameras  
once  per  second and apphes a sof tware discr iminat ion level  
to reduce  the v ideo  picture to a 256 by 256 array o f  binary 
data The  data  consmts of  e i ther  0 or  1 depending upon 
whether  or  not  the signal level  has exceeded  the dis- 
cr iminator  level  The entwe process ,  f rom the one  
f rame/second,  the discr iminator  level ,  to the 256 by 256 ar- 
ray, is under  sof tware control  and can be changed as desired 
The control  sys tem m the M I C R O  V A X  I packs together  
four  frames f rom each of  the two v ideo  cameras  and writes 
these data  to t emporary  storage on its hard &sk A second 
program, run concur ren t  with data acqu i smon ,  begins after  
twenty  such records  of  four  f rames have  been wri t ten This 
program transfers the data  o v e r  the e thernet  connec t ion  to 
the V A X  11/750 where  they are wri t ten to a record file on ~ts 
&sk system Each 15 minute observat ional  session corre-  
sponds to a file o f  28,800 blocks o f  512 bytes  of  data  This is a 
compressed  data format  in which eve ry  bit is uuhzed  in 
represent ing the original observa tmnal  data 

The tape dr ive on the V A X  11/750 ~s used for archival  
storage The large d~sk volume on th~s machine  ~s reqmred  
for the extens ive  data  genera ted  m any single exper iment  
The  VT 240 graphics d~splay terminal  faclhtated develop-  
ment  o f  the pat tern r ecognmon  sys tem in that ~t a l lowed the 
Investigators to see the data  and classify the behavmrs  from 
thousands  of  observa tmns  These  human classified data  are 
then the starting point  for deve lopmen t  of  pat tern recogni- 
t ion programs that classify data  without  further  human Inter- 
vent ion 

H Pattern Analyst~ Mathematical  Techmques  

The present  compute r  pat tern recogni t ion sys tem for the 
rat is based upon earher  work  with the pr imate  [3,4] Histori-  
cally,  Hu  [2] deve loped  the scalar mvanan t s  for second order  
moments  which he used to ~dentlfy let ters Teague [11] pro- 
w d e d  a c o n v e m e n t  method  for calculat ing h~gher order  mo- 
ments  and a reference  hst of  the assocmted  scalar  mvanan t s  
for any given order  This use o f  scalars,  which are invanan t  
to rota tmn,  ref lec tmn and changes m magmficat lon,  ~s in 
general  qmte  convemen t  for compu te r  class~ficatmn of  be- 
havmr  The sys tem to be descr ibed here  uses moments  to the 
fourth order  To t ransform a camera-based  coordinate  sys- 
tem to a cen t rahzed  coordinate  sys tem where  the origin is at 
the center  of  the ammal ,  a mathemat ica l ly  comple te  set of  
moments  o f  the des i red order  is necessary  

Using the sof tware  d~scnmlnator sys tem,  the densi ty  
functmn f(x,y) is a binary representa t ion  o f  the pixel inten- 
sity With this funct ion the moments  in a view can be repre-  
sented as 

M~ a = V V x ?  y~ fix,y) (1) 
1 j 

Moments  in this form are not  proper ly  normal ized for the 
calculat ion of  the scalar mvarlants ,  but  the normalizat ion ~s 
s traightforward The moments  used for the scalar mvariants  
must  be "cen t r a l  m o m e n t s , "  that ~s, the coordinate  sys tem 
must  have  its origin at the cen ter  o f  mass o f  the rat The 
notat ion used here  for the different moments  is as follows 

1 M~a = unnormahzed  moment  a/3 m the video coordinate  
sys tem with o n g m  in the upper  left-hand corner  

2 3"~a = unnormahzed  momen t  cq3 in the central ized coor-  
dinate sys tem,  1 e ,  the origin is at X ,Y  

3 / z ~  = normal ized moment  aft in the cent rahzed coordi-  
nate sys tem 

In this notat ion )( and ~" are defined as 

= MldMoo 1"2) 

'Y = MoJMoo 1"3) 

For  the calculatmn of  the scalar mvanan t s ,  the relationships 
among the important  moments  are 

3"2o = M2o - 2X Mlo + )~z Moo (4) 

")to-' = M o 2  - 2@ Mol + "~2 Moo (5) 

3')o = M)o - 3X M_.o + 3X 2 M. ,  - )~3 Moo (6) 

3'o) = M,)~ - 3~" Mo_, + 3~ "2 Mo, - Y~ Moo (7) 

3'11 = M l l  - -  ~'( Mol - "Y M l o  + XX~r M o o  (8 )  

3'2~ = M21 - 2X M .  + ~2 M.1 - ~" Mzo + 2X'~" Mlo 
_ X2y Moo (9) 

3")/12 = Mt2 - 2Y MH + ,~2 M1 ° _ )~  Mo2 + 2XY M(n 
_ y 2 x  M,),) ( 1 0 )  

3"), = M , 1  - 3X M2, + 3XY M2o + 3X 2 MI1 
- 3 X Z ~  " M , o  - X 3  M o t  - Y M)o 
+ XI~, Moo (11) 

3'1~ = MI) - 3~" ML2 + 3X'Y MoA + 3"Y 2 M 1 1  

-- 3XY 2 Min - Y~ Mol - X Mo~ 

+ y(ys Moo (12) 

3'2~ = M22 - 2@ M2_~ _+ Y~ M_,o - 2X M12 
+ 4XY M .  - 2X37 2 M.) + )(~ Moz 
_ 2)~@ M01 + )7~2~,r Moo (13) 

y4,) = M4(, - 4)( M~(, + 6X 2 M,,) - 4)( ~ Ml0 + Xa Moo (14) 

3'o4 = M,)~ - 4~" M01 + 6~ "2 Mo2 - 4Y a Mol + ~'~ Moo (15) 

The M ~  in these equat ions are expressed  in a form for wMch 
each ptxel has umt area, instead of  using hmtts such that both 
X and Y he be tween  - 1 and + 1 This formulat ion o f  the umt 
area has some advantages  in the lmtml processing o f  data 
The relat ionship be tween  the /z 's and the 3"s as defined 
above  is 

3"~a 
p.,~ = (16) 

3"o0(Ot +B +2)/2 

The somewhat  unusual normahzat lon  factor  in th~s equa tmn 
is taken from Teague [11] and is related to invar iance o f  the 
moments  as the magnificat ion or  scale changes  In the meas-  
urement  o f  annnal behavior ,  the m o v e m e n t  o f  the subject  
toward or  away from the camera ,  as well  as sine differences 
be tween  ammals ,  m a k e t h i s  f ac to r lmpor t an t  W~th the /z ' s  as 
defined above,  Teague ' s  scalar invarlants  which correspond 
to the descnp tmn  of  four th-order  moments  are the fol lowing 

S1 = 3 [2(p~2o + I,~o2) -- 1] (17) 
7T 

= 9--~[(/z20 - /x02) ~ + 4/.t~d (18) $2 

16 
$3 = ~ -  [(/.*03 - 3~21) 2 + (/-*30 - 3/x~2) 2] (19) 
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144 
$4 = ~ [(~o~ - ~_,,)2 + (~o + ~12)2] (20) 

13824 
$5  = ~ [(tz0~ - 3it2,)  (tt0~ + ~2,)/(tt0~ + it2,) ~ 

- 3(/Z~o + fl ,12) 2} - (/d~?to - 3bt]2) (/Z~o + ~/,12) 2 

{(/x~o + ~,2) 2 - 3(/z0~ + it2,)2}] (21) 

864 
S6 = ~ [(/z02 -/Xzo) {(It0, +/Zz02 - (/zs0 + ~[J~12) 2} 

+ 4/xli(/z0~ + /x2t) (/x~0 + /x~)] (22) 

25 
$7 = ~ - [ ( p 4 0  - 6/~z2 +/x04) z - 16(/z~1 - /x~02] (23) 

25 
$8 = ~rT-[{a(txo~ - /x4o) + 3 ( / x 2 o -  /Xo~)} 2 

+ 4 {4(tx~, + /z,}) - 3/zH} 21 (24) 

$9 = __5 [6(/x4, + 2/xg. + /x04) - 6(/x.,() + /zo~) + 1] (25) 
7r  

S10 = ~ [(#4o - 6/xz~ + /z,,4) ({4(/x,. - ~,, ,  + 3(/x20 - /Zoz)} 2 

- 4 { 4(/x~ + /z,~) - 3/Zll} 2) 

-- 16{4(/X,,4 -- /Xq(,) + 3(/X20- /Z02)} {4(/X~ + /X~0 
-- 3/ZH} { / Z , l -  /Z~}] (26) 

30 "~4( S l l  = ~-~-l't /x04- /z4(,) + 3(/.t.,0 - /x,,z)} {/z0~- /x.,,} 

+ 4/x,, {4(/z,1 + /z,,) - 3/z,,}] (27) 

(Some calculations m Teague 's  Appendix  A contained 
typographical errors that were noted and corrected for the 
purposes of this apphcat lon to behavior  ) 

Any application of higher order moments  to the mterpre- 
t auon  of  a picture has at least potential  problems w~th noise 
The major problem is noise well separated from the main 
pattern,  such as that created when fecal materml is deposited 
by the animal within the observat ional  env i ronment  Noise 
well separated from the mare pattern can contr ibute  an exag- 
gerated effect m higher order moments  much as a long lever 
arm magnifies hftmg force The pat tern analys~s program 
contains  a segment  specmlly designed to suppress such ex- 
t raneous noise 

III Pattern Classtfi~at:on Behavtoral Taxonomy 

The s~xteen behavioral  acts recorded in a prevtous time- 
lapse photographic study [5] served as the starting point  for 
the present  pat tern classification programs These 16 acts 
can be divided into two mutually exclusive groups of activi- 
ties, 5 major  body pos~t~ons and 11 modifiers These acts can 
be combined to form a total of  36 different behavioral  activi- 
ties The major  body positions consist  of  stand, sit, rear, 
walk and lying down The modifiers consist  of  blank (no 
concurrent  actw]ty), groom, head turn,  turn,  look, smell, 
sniff, wash face, bob,  scratch and paw Nor ton  [7] has de- 
fined most  of these rat behaviors m terms meaningful to 
human  observers ,  and the pattern classification programs 
provided here define all but  three modifiers m terms mean-  
mgful to a computer  The three modifiers that the computer  
system has not  been  programmed to recogmze are bobbing,  
pawing and scratching In  the case of the t ime-lapse photo- 
graphic system, a long shutter time enabled a human  ob- 
server to quickly recognize these three acts A rapid move- 
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FIG 3 Rearing behavior as "observed" by the computer from a 
honzontal (side) and vertical (top) view 
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FIG 4 Standing behavior as 'observed" by the computer from a 
horizontal (side) and vertical (top) wew 

ment  of one port ion of the body would blur  the ~mage of  that  
port ion on film Thus,  " bobb ing"  corresponded to a b l u m n g  
of the head, whereas "sc ra tch ing"  and " p a w m g "  corre- 
sponded to a blurring of the paw m a part icular  posit ion in 
space With the introduct ion of the video cameras,  this blur- 
nng  cue has been lost 

The technique used m the pat tern classification process ~s 
a combinat ion  of two methods,  one referred to as a 
"decis ion-theoret ic  method"  and one as "discr iminate  
techniques"  ([10]. p 61) The first rehes upon similarity 
measurements  I f  a feature vector  V = (V1, Vz Vn) IS 
used as a mathematical  model to represent  an original ~mage. 
then each observat ion corresponds to a point m the 
N-dimensional  space In any space, independent  of the 
number  of &mens lons ,  a vector  goes from the o n g m  of the 
space to a part icular  point  Therefore,  there exists a logical 
relationship be tween  the vector  and a umque  point  m the 
space Two vectors can be compared by  mathematical  tests 
upon  the vectors themselves,  such as their product  or the 
spatial separation of their corresponding two points It ~s 
expected that points corresponding to different behaworal  
acts, each belonging to the same spatml class, will cluster m 
the N-&mens lona l  space such that their separat ion wdl, on 
the average, be small The separation of  each of  these points 
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FIG 5 A Standing and looking behawors as "observed" by the 
computer from a horizontal (side) and vertical (top) view during 
second X B Standing and turning behaviors "observed" dunng 
second X + 1 

from the region occupied by a second class is expected to be 
larger ff this techmque is to be useful m distinguishing the 
class to which an act belongs As the number of  possible 
classes becomes large, the dimensions of  the reqmred fea- 
ture space also increase 

In contrast to the "decision-theoretic method,"  "dis- 
criminate techniques" exploit the dissimilarities between dif- 
ferent classes These methods, m that they discriminate be- 
tween one class and all remaining classes, are advantageous 
in the present apphcat~on The decision process can be ac- 
comphshed by a series of  binary class separation rules, since 
the separation ms always between one class and all remaining 
classes For  example, the position of the vertically highest 
point of animal data m the vertically oriented view can be 
used easily to &scriminate the act rear from all other major 
body positions Different feature vectors can be formed and 
used at each step of  the decision process 

To the extent possible, all decisions are made in terms of  
normalized, centrahzed moments or scalar lnvanants This 
method results in the major deoslons not being affected by 
the size of  the ammal In turn, the classificaUon program 
need not be modified to any major extent when the size of 
the ammal vanes with age, sex or general health Some de- 
cisions dunng the classification program cannot be made 
without reference to particular positions in space As an 
example, the operational definition of "sntf f"  requires that 
the nose of  the animal be in close proximity with one of  the 
holes connecting the two sides of  the observational box 
Such a decision cannot be made using variables which are 
invarlant to rotation, reflection or cage position, mt must be 
made using a particular spatial point on the animal's body 
Similar decisions are involved In the classification of  look, 
smell and, to some extent, turn and head turn 

Major body posmon The classification program using the 
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FIG 6 Sitting and groormng behaviors as "observed" by the com- 
puter from a horizontal (side) and vertical (top) view 
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FIG 7 Sitting and washmg face behaviors as "observed" by the 
computer from a honzontal (side) and vertical (top) view 

decision-theoretic approach first decides whether or not the 
rats are reanng The decision on rear can be made on a 
number of  calculated variables including the center of  animal 
mass in the horizontal view, the highest data point from the 
animal in the horizontal view, or the ratio of the first order 
moments along the horizontal and vertical axes m the hori- 
zontal view (Fig 3) If the act is not a rear, the classification 
program next examines movement  of  the ammal in the verti- 
cal view from one frame to the next If this movement ex- 
ceeds a certain hmlt, the act is classified as walking The 
remaining three body positions, standing, sitting or lying 
down, are determined using a variety of  checks revolving 
scalar mvariants and centrahzed, normahzed moments In 
addition, for an "obse rved"  act to be lying down, It must 
continue for at least three frames due to the long average 
duration known for this act [9] Except  for the most difficult 
cases, the distmctlon between standing (Fig 4) and sitting 
(Figs 6 and 7) is based upon the comparison of the length of  
the long and short axes of  the ammal 's  body When this ratio 
represents a long stretched out body position, the act is au- 
tomatically classified as standmg 



564 K E R N A N ,  M U L L E N I X  A N D  H O P P E R  

Modi f iers  In the classification o f  modifiers,  the most  im- 
portant  single piece of  mformatmn is the locatmn of the nose 
of  the animal in at least  the vert ical  v iew When the center  of  
animal mass changes very  httle whde the nose posit ion 
changes significantly be tween  adjacent  frames in the vert ical  
vmw, the modif ier  Is designated as a head turn The actual 
program considers  not  only the p o s m o n  of  the nose m this 
view but also the angle be tween  the center  of  animal mass 
and the nose f rom one frame to the next  Change in the angle 
of  the major  ax~s of  the body be tween  adjacent  frames ~s 
classified as a turn (Fig 5 B) The nose posmon  of  the 
ammal,  ff it is well  above  the cen ter  o f  animal mass in the 
honzonta l  view,  is used to determine the modif ier  look (Fig 
5 A) I f  the nose in this w e w  is close to the cage floor or  one 
of  the walls outside the proximity  of  the center  panel holes,  
the mochfier is set to smell If  the nose posmon  is close to 
any of  the center  panel  holes,  then the modifier  ~s designated 
a stuff The modifiers g room (Fig 6) and wash face (Fig 7) 
are d is tmgmshed using scalar mvariants  and the central ized 
moments  o f  the distribution of  the animal The modifier  
blank is at this level o f  the program a default condit ion when 
no o ther  modif ier  has been  specified 

It should be obvious  that two modifiers  have the potentml 
to co-occur ,  the animal could turn and look almost  at the 
same t ime In the present  versmn of the classification pro- 
gram, only a major  body p o s m o n  and one modifier  are 
a l lowed Thus,  there exists a priority ranking among the 
modifiers Th~s priority ranking is set such that m o v e m e n t  
takes precedence  ove r  n o n m o v e m e n t  modifiers This means  
that ff the condi tmns for turn or  head turn are satisfied, they 
are recorded  to the exclusmn of  all o thers  All remaining 
modifiers,  groom, wash  face,  blank, sniff, smell and look, 
are mutually exc luswe  

RECORD STRUCTURE AND DATA ANALYSIS 

Using t ime-lapse photography at 1 f rame/second,  one 15 
minute film of  a pair  of  rats genera ted  900 frames from which 
3600 entries [900 × (1 body posit ion + 1 modifier) x 2 rats] 
of  behawora l  data  were  classified by a human obse rve r  
Using compute r  pat tern recognit ion,  the same 15 minute ob- 
servat ion session generates  28,800 blocks of  lnformatmn,  512 

bytes  each After  processing through the pattern analysis 
program, the output  consists of  a separate  record for each of  
the two ammals  that is 1604 blocks of  512 bytes Beyond  
classification of  the actual behawora l  activity,  the compute r  
output  per  rat, hke t ime-lapse analysis,  provides  a measure  
of  multiple parameters  such as the number  of  mmat lons ,  the 
average duratmn and the d l s tnbutmn in t ime of  each act  or  
pmr of  acts In addition, the output  per  rat provides the 
following information for each camera  vmw the center  of  
mass x and y, the angle of  the body orientat ion,  the move-  
ment  and change m the angle compared  to the prior frame 
This entire record for one observa tmn session o f  900 frames 
corresponds  to 300 blocks of  512 bytes each 

CONCLUSION 

Time-lapse photographic  analysis of  spontaneous  rat be- 
havior  has been adjusted to accommoda te  compute r  pattern 
recognit ion techniques  Although three behaviors  (bobbing, 
scratching and pawing) were lost in this convers ion ,  their  
infrequent  occurrence  rendered the loss o f  no serious conse-  
quence when comparing control  and exper imental  animals 
In all, the compute r  pattern recognit ion system provides a 
noninvaslve ,  sensi t ive measure  o f  animal behavmr  which no 
longer requires a prohibit ive amount  of  Investigator time 
Compared  to the 2 5 hours It took one obse rve r  just  to 
classify a 15 minute film of  one pmr of  rats, It is now possible 
to complete ly  analyze the activity of  at least 120 control  and 
exper imenta l  rats in one week The results incorporate  only 
mlmmal  subject ive judgements  by the invest igator ,  and all 
observat ion data are retr ievable to answer  unexpec ted  ques- 
tmns This new sys tem finally provides  the technological  
advancement  necessary  for making dose-response  curves  in 
behawora l  toxici ty testing a relatively simple procedure  
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